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Algorithm Analysis and 

Asymptotic Notations
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What is the algorithm

 An algorithm is a step-by-step procedure for performing some task 

(ex: sorting a set of integers) in a finite amount of time.

We are concerned with the following properties:

▪ Correctness

▪ Efficiency (how fast it is, how many resources it needs)

Algorithm OutputInput
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Running Time

 Running time is a natural measure of Efficiency.

▪ So what would be the proper way of measuring it?

▪ Do experiments, and then find the run time.

 If we have two algorithms for a problem, implement them and do 

several experiments on various input size.

▪ Then decide which algorithm is better.
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Experimental Studies

 Run the program with inputs of 
varying size and composition

 Use a method like std::clock() to get 
an accurate measure of the actual 
running time

 Plot the results 0
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What is the problem of experimental studies?

 The running time is affected by the hardware (Processor, RAM, etc.) 
and software (Compiler, programing language, etc.)
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Limitations of Experiments

 Need to implement the algorithm

▪ may be difficult

 Experiments done on a limited set of test inputs

▪ may not be indicative of running times on other inputs not included in the 
experiment.

 Difficult to compare

▪ same hardware and software environments must be used
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Running time

We need another way to measure to the running time of an 

algorithm which:

▪ Considers all possible inputs.

▪ Be independent from hardware and software.
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Running Time 

 The running time of an algorithm typically 
grows with the input size.

 Average case time is often difficult to 
determine.

We focus on the worst case running time.

▪ Easier to analyze

▪ Crucial to applications such as games, finance, 
and robotics
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Theoretical Analysis

• Uses pseudocode, a high-level description of the algorithm

– no implementation necessary

• Takes into account all possible inputs

• Characterizes running time by f(n), a function of the input size n

– allows us to evaluate the speed of an algorithm independent of 
hardware/software environment
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Pseudocode

 Mixture of natural language and high-level 
programming constructs that describe the 
main ideas behind an algorithm 
implementation.

 Preferred notation for
describing algorithms.

 Hides program design issues

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

currentMax  A[0]

for i  1 to n − 1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax
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Pseudocode Details

Control flow

▪ if … then … [else …]

▪ while … do …

▪ repeat … until …

▪ for … do …

▪ Indentation replaces braces

Method declaration

Algorithm method (arg [, arg…])

Input …

Output …

 Method call

var.method (arg [, arg…])

 Return value

return expression

 Expressions

 or := Assignment (like = in 
C++)

= Equality testing (like == in 
C++)

n2 Superscripts and other 
mathematical formatting 
allowed
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The Random Access Machine (RAM) Model

• Views a computer as:

– a CPU, with

– a potentially unbounded bank of 

memory cells, each of which can 

hold an arbitrary number or 

character

0
1
2

Memory cells are numbered and accessing any cell in memory 

takes unit time.

Random Access refers to ability of CPU to access arbitrary memory 

cell with one primitive operation.
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Primitive Operations

– evaluating an expression

– assigning a value to a variable

– indexing into an array

– calling a method

– returning from a method

• Basic computations performed by an algorithm

– Identifiable in pseudocode

– Largely independent from the programming language

– Exact definition not important (we’ll see why later)

• Assumed to take a constant amount of time in the RAM 
model

• Includes:
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Counting Primitive Operations

 By inspecting the Pseudocode, we can determine the maximum 

number of primitive operations executed by an algorithm, as a 

function of the input size.

Algorithm arrayMax(A, n)                      Operations

currentMax  A[0]                                  2

for i  1 to n − 1 do                               1+n

if A[i]  currentMax then                2(n-1)

currentMax  A[i]                     2(n-1)

{ increment counter i }                   2(n-1)

return currentMax 1

An algorithm to find the maximum number in array.
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Counting Primitive Operations

Analysis of Algorithms 15


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Estimating Running Time

 Algorithm arrayMax executes 7n − 2 primitive operations in the worst 
case.  

 Define:

a = time taken by the fastest primitive operation

b = time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a(7n − 2)  T(n)  b(7n − 2)

 Hence, the running time T(n) is bounded by two linear functions.
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Growth Rate of Running Time

Changing the hardware/software environment 

▪ affects T(n) by a constant factor, but

▪ does not alter the growth rate of T(n)

 The linear growth rate of the running time T(n) is an intrinsic property 

of algorithm arrayMax.
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Mathematical Review
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Growth Rates

Constant  1

Logarithmic   logn

Linear  n

Quadratic  n2

Cubic  n3

Polynomial  nk (for k ≥ 1)

Exponential  an (a ≥ 1)

▪ Growth rate is not affected by 

– constant factors or 

– lower-order terms

▪ Ex: 102n + 105 is a linear function

▪ Ex: 105n2 + 108n is a quadratic function
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Asymptotic Complexity

• Worst case running time of an algorithm as a function of input size n

for large n.

• Expressed using only the highest-order term in the expression for the 
exact running time.

– Instead of exact running time, say O(n2)

• Written using asymptotic notation (O, , , o, )

– Ex: f(n) = O(n2)

– Describes how f(n) grows in comparison to n2

• The notations describe different rate-of-growth relations between 

the defining function and the defined set of functions
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O-notation

For functions g(n), we define 

O(g(n)), big-O of n, as the set:

O(g(n)) = { f(n) :

∃ positive constants c and n0, 

such that ∀n ≥ n0

we have 0  f(n)  cg(n) }

Intuitively: Set of all functions whose rate of growth is the 
same as or lower than that of g(n).

Technically,  f(n) ∈ O(g(n)).

Older usage,  f(n) = O(g(n)).

g(n) is an asymptotic upper bound for f(n)
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Examples

O(n2)

▪ f(n) = n2 + 1

▪ f(n) = n2 + n

▪ f(n) = 10000n2 +10000n + 300

▪ f(n) = n1.99

O(g(n)) = { f(n) :  ∃ positive constants c and n0, 

such that ∀n ≥ n0 , we have 0  f(n)  cg(n) }

• O(n)

▪ f(n)=7n+3

▪ f(n) = 2n + 10

▪ f(n) = n + 1

▪ f(n) = 10000n

▪ f(n) = 10000n + 300

• The function n2 is not O(n)

– the inequality n2  cn cannot be satisfied since c is constant
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Big-Oh Rules

 Drop lower-order terms

▪ Ex: if  f(n) is a polynomial of degree d, then f(n) is O(nd)

 Drop constant factors, using the simplest expression of the class

▪ Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

 Use the smallest possible class of functions

▪ Say “2n is O(n)” instead of “2n is O(2n)”
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Asymptotic Algorithm Analysis

 The asymptotic analysis of an algorithm determines the running time 
in big-Oh notation

 To perform the asymptotic analysis

▪ Find the worst-case number of primitive operations executed as a function of 
the input size

▪ We express this function with big-Oh notation

 Ex:

▪ arrayMax executes at most 7n − 1 primitive operations

▪ arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms are eventually 
dropped anyhow, we can disregard them when counting primitive 
operations
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Ex: Computing Prefix Averages

 We further illustrate asymptotic analysis 
with two algorithms for prefix averages.

 The i-th prefix average of an array X is 
average of the first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

 Prefix average has applications in 
economic and statistics
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Prefix Averages V1                

The following algorithm computes prefix averages by 

applying the definition

Analysis of Algorithms 26

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X

A  new array of n integers

for i  0 to n − 1 do

s  X[0]

for j  1 to i do

s  s + X[j]

A[i]  s / (i + 1)

return A

rough # operations

n

n

n

1 + 2 + … + (n-1)

1 + 2 + … + (n-1)

n

1

O(n2)  - Quadratic!
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Prefix Averages V2                

The following algorithm computes prefix averages 
by keeping a running sum

Analysis of Algorithms 27

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X

A  new array of n integers

s  0

for i  0 to n − 1 do

s  s + X[i]

A[i]  s / (i + 1)

return A 

rough # operations

n

1

n

n

n

1

O(n)  - Linear!
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Ω-notation

For functions g(n), we define 

Ω(g(n)), big-Omega of n, as the 

set:

Analysis of Algorithms 28

Ω(g(n)) = { f(n) :

∃ positive constants c and n0, 

such that ∀n ≥ n0

we have 0  cg(n)  f(n)}

Intuitively: Set of all functions whose rate of growth is the 
same as or higher than that of g(n).

g(n) is an asymptotic lower bound for f(n)
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𝛩-notation

For functions g(n), we define 
𝛩(g(n)), big-Theta of n, as the set:

Analysis of Algorithms 29

𝛩(g(n)) = { f(n) :

∃ positive constants c1, c2, and n0, 

such that ∀n ≥ n0

we have 0  c1g(n)  f(n)  c2g(n)}

Intuitively: Set of all functions that have the same rate of 
growth as g(n).

g(n) is an asymptotically tight bound for
f(n)
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Relationship between O, Ω, 𝛩

Analysis of Algorithms 30


