
1Data Structures Department of Computer Science – University of Zakho

Algorithm Analysis and

Asymptotic Notations

2Data Structures Department of Computer Science – University of Zakho

What is the algorithm

 An algorithm is a step-by-step procedure for performing some task

(ex: sorting a set of integers) in a finite amount of time.

We are concerned with the following properties:

▪ Correctness

▪ Efficiency (how fast it is, how many resources it needs)

Algorithm OutputInput

3Data Structures Department of Computer Science – University of Zakho

Running Time

 Running time is a natural measure of Efficiency.

▪ So what would be the proper way of measuring it?

▪ Do experiments, and then find the run time.

 If we have two algorithms for a problem, implement them and do

several experiments on various input size.

▪ Then decide which algorithm is better.

4Department of Computer Science – University of Zakho

Experimental Studies

 Run the program with inputs of
varying size and composition

 Use a method like std::clock() to get
an accurate measure of the actual
running time

 Plot the results 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s
)

5Data Structures Department of Computer Science – University of Zakho

What is the problem of experimental studies?

 The running time is affected by the hardware (Processor, RAM, etc.)
and software (Compiler, programing language, etc.)

6Data Structures Department of Computer Science – University of Zakho

Limitations of Experiments

 Need to implement the algorithm

▪ may be difficult

 Experiments done on a limited set of test inputs

▪ may not be indicative of running times on other inputs not included in the
experiment.

 Difficult to compare

▪ same hardware and software environments must be used

7Data Structures Department of Computer Science – University of Zakho

Running time

We need another way to measure to the running time of an

algorithm which:

▪ Considers all possible inputs.

▪ Be independent from hardware and software.

8Data Structures Department of Computer Science – University of Zakho

Running Time

 The running time of an algorithm typically
grows with the input size.

 Average case time is often difficult to
determine.

We focus on the worst case running time.

▪ Easier to analyze

▪ Crucial to applications such as games, finance,
and robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case

average case

worst case

9Data Structures Department of Computer Science – University of Zakho

Theoretical Analysis

• Uses pseudocode, a high-level description of the algorithm

– no implementation necessary

• Takes into account all possible inputs

• Characterizes running time by f(n), a function of the input size n

– allows us to evaluate the speed of an algorithm independent of
hardware/software environment

10Data Structures Department of Computer Science – University of Zakho

Pseudocode

 Mixture of natural language and high-level
programming constructs that describe the
main ideas behind an algorithm
implementation.

 Preferred notation for
describing algorithms.

 Hides program design issues

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

currentMax  A[0]

for i  1 to n − 1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

11Data Structures Department of Computer Science – University of Zakho

Pseudocode Details

Control flow

▪ if … then … [else …]

▪ while … do …

▪ repeat … until …

▪ for … do …

▪ Indentation replaces braces

Method declaration

Algorithm method (arg [, arg…])

Input …

Output …

 Method call

var.method (arg [, arg…])

 Return value

return expression

 Expressions

 or := Assignment (like = in
C++)

= Equality testing (like == in
C++)

n2 Superscripts and other
mathematical formatting
allowed

12Data Structures Department of Computer Science – University of Zakho

The Random Access Machine (RAM) Model

• Views a computer as:

– a CPU, with

– a potentially unbounded bank of

memory cells, each of which can

hold an arbitrary number or

character

0
1
2

Memory cells are numbered and accessing any cell in memory

takes unit time.

Random Access refers to ability of CPU to access arbitrary memory

cell with one primitive operation.

13Data Structures Department of Computer Science – University of Zakho

Primitive Operations

– evaluating an expression

– assigning a value to a variable

– indexing into an array

– calling a method

– returning from a method

• Basic computations performed by an algorithm

– Identifiable in pseudocode

– Largely independent from the programming language

– Exact definition not important (we’ll see why later)

• Assumed to take a constant amount of time in the RAM
model

• Includes:

14Data Structures Department of Computer Science – University of Zakho

Counting Primitive Operations

 By inspecting the Pseudocode, we can determine the maximum

number of primitive operations executed by an algorithm, as a

function of the input size.

Algorithm arrayMax(A, n) Operations

currentMax  A[0] 2

for i  1 to n − 1 do 1+n

if A[i]  currentMax then 2(n-1)

currentMax  A[i] 2(n-1)

{ increment counter i } 2(n-1)

return currentMax 1

An algorithm to find the maximum number in array.

15Data Structures Department of Computer Science – University of Zakho

Counting Primitive Operations

Analysis of Algorithms 15



16Data Structures Department of Computer Science – University of Zakho

Estimating Running Time

 Algorithm arrayMax executes 7n − 2 primitive operations in the worst
case.

 Define:

a = time taken by the fastest primitive operation

b = time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a(7n − 2)  T(n)  b(7n − 2)

 Hence, the running time T(n) is bounded by two linear functions.

17Data Structures Department of Computer Science – University of Zakho

Growth Rate of Running Time

Changing the hardware/software environment

▪ affects T(n) by a constant factor, but

▪ does not alter the growth rate of T(n)

 The linear growth rate of the running time T(n) is an intrinsic property

of algorithm arrayMax.

18Data Structures Department of Computer Science – University of Zakho

Mathematical Review

19Data Structures Department of Computer Science – University of Zakho

Growth Rates

Constant  1

Logarithmic  logn

Linear  n

Quadratic  n2

Cubic  n3

Polynomial  nk (for k ≥ 1)

Exponential  an (a ≥ 1)

▪ Growth rate is not affected by

– constant factors or

– lower-order terms

▪ Ex: 102n + 105 is a linear function

▪ Ex: 105n2 + 108n is a quadratic function

20Data Structures Department of Computer Science – University of Zakho

Asymptotic Complexity

• Worst case running time of an algorithm as a function of input size n

for large n.

• Expressed using only the highest-order term in the expression for the
exact running time.

– Instead of exact running time, say O(n2)

• Written using asymptotic notation (O, , , o, )

– Ex: f(n) = O(n2)

– Describes how f(n) grows in comparison to n2

• The notations describe different rate-of-growth relations between

the defining function and the defined set of functions

21Data Structures Department of Computer Science – University of Zakho

O-notation

For functions g(n), we define

O(g(n)), big-O of n, as the set:

O(g(n)) = { f(n) :

∃ positive constants c and n0,

such that ∀n ≥ n0

we have 0  f(n)  cg(n) }

Intuitively: Set of all functions whose rate of growth is the
same as or lower than that of g(n).

Technically, f(n) ∈ O(g(n)).

Older usage, f(n) = O(g(n)).

g(n) is an asymptotic upper bound for f(n)

22Data Structures Department of Computer Science – University of Zakho

Examples

O(n2)

▪ f(n) = n2 + 1

▪ f(n) = n2 + n

▪ f(n) = 10000n2 +10000n + 300

▪ f(n) = n1.99

O(g(n)) = { f(n) : ∃ positive constants c and n0,

such that ∀n ≥ n0 , we have 0  f(n)  cg(n) }

• O(n)

▪ f(n)=7n+3

▪ f(n) = 2n + 10

▪ f(n) = n + 1

▪ f(n) = 10000n

▪ f(n) = 10000n + 300

• The function n2 is not O(n)

– the inequality n2  cn cannot be satisfied since c is constant

23Data Structures Department of Computer Science – University of Zakho

Big-Oh Rules

 Drop lower-order terms

▪ Ex: if f(n) is a polynomial of degree d, then f(n) is O(nd)

 Drop constant factors, using the simplest expression of the class

▪ Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

 Use the smallest possible class of functions

▪ Say “2n is O(n)” instead of “2n is O(2n)”

24Data Structures Department of Computer Science – University of Zakho

Asymptotic Algorithm Analysis

 The asymptotic analysis of an algorithm determines the running time
in big-Oh notation

 To perform the asymptotic analysis

▪ Find the worst-case number of primitive operations executed as a function of
the input size

▪ We express this function with big-Oh notation

 Ex:

▪ arrayMax executes at most 7n − 1 primitive operations

▪ arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms are eventually
dropped anyhow, we can disregard them when counting primitive
operations

25Data Structures Department of Computer Science – University of Zakho

Ex: Computing Prefix Averages

 We further illustrate asymptotic analysis
with two algorithms for prefix averages.

 The i-th prefix average of an array X is
average of the first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

 Prefix average has applications in
economic and statistics

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X

A

26Data Structures Department of Computer Science – University of Zakho

Prefix Averages V1

The following algorithm computes prefix averages by

applying the definition

Analysis of Algorithms 26

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X

A  new array of n integers

for i  0 to n − 1 do

s  X[0]

for j  1 to i do

s  s + X[j]

A[i]  s / (i + 1)

return A

rough # operations

n

n

n

1 + 2 + … + (n-1)

1 + 2 + … + (n-1)

n

1

O(n2) - Quadratic!

27Data Structures Department of Computer Science – University of Zakho

Prefix Averages V2

The following algorithm computes prefix averages
by keeping a running sum

Analysis of Algorithms 27

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X

A  new array of n integers

s  0

for i  0 to n − 1 do

s  s + X[i]

A[i]  s / (i + 1)

return A

rough # operations

n

1

n

n

n

1

O(n) - Linear!

28Data Structures Department of Computer Science – University of Zakho

Ω-notation

For functions g(n), we define

Ω(g(n)), big-Omega of n, as the

set:

Analysis of Algorithms 28

Ω(g(n)) = { f(n) :

∃ positive constants c and n0,

such that ∀n ≥ n0

we have 0  cg(n)  f(n)}

Intuitively: Set of all functions whose rate of growth is the
same as or higher than that of g(n).

g(n) is an asymptotic lower bound for f(n)

29Data Structures Department of Computer Science – University of Zakho

𝛩-notation

For functions g(n), we define
𝛩(g(n)), big-Theta of n, as the set:

Analysis of Algorithms 29

𝛩(g(n)) = { f(n) :

∃ positive constants c1, c2, and n0,

such that ∀n ≥ n0

we have 0  c1g(n)  f(n)  c2g(n)}

Intuitively: Set of all functions that have the same rate of
growth as g(n).

g(n) is an asymptotically tight bound for
f(n)

30Data Structures Department of Computer Science – University of Zakho

Relationship between O, Ω, 𝛩

Analysis of Algorithms 30

